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Abstract—Accurate detection and monitoring of multiple scle-
rosis (MS) lesions in magnetic resonance imaging (MRI) are
critical for diagnosis and treatment planning but remain chal-
lenging due to the variability of the lesion and the complexity
of volumetric data. Although deep learning has shown promise
in automated lesion segmentation, comprehensive comparative
evaluations of different architectures in this context are limited.
This paper compares standard UNet, CDCG-UNet, and Swin-
UNet architectures. These architectures have been used for
tumors; however, we apply them to lesions. We evaluate their
performance using the F1 score and Intersection over Union
(IoU). Experimental results show that Swin-UNet consistently
outperforms U-Net and CDCG-UNet across coronal, axial, and
sagittal axes. Specifically, Swin-UNet achieved the highest IoU
and F1 scores on the combined MSSEG 2016 and Shifts 2.0
dataset in all views, with an IoU of 0.6262 and F1 of 0.6857 in
the coronal view, IoU of 0.7015 and F1 of 0.7417 in the axial
view, and IoU of 0.5715 and F1 of 0.6368 in the sagittal view.

I. INTRODUCTION

Multiple sclerosis (MS) is a chronic neurological disease
characterized by inflammation, demyelination, and neurode-
generation within the central nervous system, significantly
impacting patient quality of life [1]. Accurate detection and
continuous monitoring of MS lesions through magnetic reso-
nance imaging (MRI) are crucial in diagnosis and treatment
planning. However, the interpretation of MRI scans, partic-
ularly identifying subtle lesion changes over time, remains
challenging due to variability in lesion appearance and the
complexity inherent in volumetric data interpretation [2].

Recent advancements in deep learning, specifically in med-
ical image segmentation, have significantly enhanced auto-
mated lesion detection capabilities. Various neural network

architectures, including UNet and its variants, have demon-
strated strong potential for medical segmentation tasks [3].
Nevertheless, comparative assessments of these architectures,
particularly in the context of MS lesion detection, remain
sparse.

We assess and compare three leading segmentation architec-
tures—standard UNet, CDCG-UNet, and Swin-UNet—based
on their effectiveness in accurately identifying MS lesions,
using metrics such as the F1 score and Intersection over Union
(IoU). We tailor various pre-processing steps to adapt these
architectures for lesion segmentation.

The following sections present related work, detailed system
architecture, our machine learning methodology, extensive
evaluation results, and future directions.

A. Background on Multiple Sclerosis

Multiple sclerosis is an autoimmune disease that predom-
inantly affects adults, with onset typically between 20 and
40 years of age. The disease is characterized by the immune
system erroneously attacking the protective myelin sheath
surrounding nerve fibers, resulting in inflammation and sub-
sequent neuronal damage. Clinically, MS presents through
various symptoms, including motor impairment, cognitive
deficits, sensory disturbances, fatigue, and visual problems,
significantly impacting daily functioning and quality of life [1].

MS lesions, identifiable via MRI, are focal areas of damage
predominantly found in the white matter, though they can also
occur in gray matter and spinal cord tissue. The appearance
and evolution of these lesions are central to diagnosing MS
and monitoring disease progression and treatment efficacy [3].



Typical MRI biomarkers for MS include lesion number, lesion
volume, and patterns of lesion distribution.

Given the heterogeneous nature of MS, early and precise
identification of lesion changes is essential for personalized
patient management. Traditional methods of lesion assessment
involve manual delineation by radiologists, a process that is
both time-consuming and subject to significant intra- and inter-
observer variability [3]. This situation highlights the urgent
need for automated, accurate, and consistent segmentation
tools to assist lesion tracking.

B. Objectives and Aims

We present a comprehensive comparative analysis of leading
segmentation architectures—standard UNet, CDCG-UNet, and
Swin-UNet—emphasizing the clinical advantages and perfor-
mance benefits of Swin-UNet in MS lesion tracking. Our
findings underscore the model’s potential to enhance precision
in clinical decision-making, promote interdisciplinary collab-
oration, and improve patient outcomes.

We apply Swin-UNet to MS lesion detection for the first
time, demonstrating its superior performance through exten-
sive validation using standard medical segmentation metrics
such as the F1 score and Intersection over Union (IoU).

II. RELATED WORK

A. Medical Image Segmentation

Medical image segmentation has become a cornerstone of
modern diagnostic and treatment planning workflows, enabling
precise delineation of anatomical structures and pathological
regions within volumetric data. Traditional image processing
techniques—such as thresholding, region growing, and edge
detection—have seen limited success in handling the variabil-
ity and complexity of medical images, especially when dealing
with subtle or diffuse lesions common in diseases like Multiple
Sclerosis (MS) [4].

With the advent of deep learning, convolutional neural
networks (CNNs) have become the dominant paradigm for
medical image segmentation. Among these, the UNet archi-
tecture introduced by Ronneberger et al. [4] has emerged as
a foundational model due to its encoder-decoder structure and
effective skip connections, allowing for precise localization
and semantic context fusion. UNet and its derivatives have
demonstrated strong performance across various segmentation
tasks, including brain tumors, retinal vessels, and white matter
lesions.

Numerous architectural variants have been proposed to
enhance segmentation accuracy and generalizability. CDCG-
UNet incorporates dense and contextual convolutions to im-
prove feature extraction, particularly in cases of low-contrast
boundaries. More recently, transformer-based models such as
Swin-UNet have introduced self-attention mechanisms into the
segmentation pipeline. This development allows the model to
capture long-range dependencies and global contextual infor-
mation more effectively [5]. These advancements have shown
promise in improving lesion detection sensitivity and reducing

false positives, particularly in complex clinical scenarios like
MS lesion segmentation.

B. MS Lesion Detection Tools

Accurate and reproducible detection of Multiple Sclerosis
(MS) lesions from MRI scans is critical for diagnosis, moni-
toring disease progression, and evaluating treatment efficacy.
Traditional approaches for lesion identification have relied
heavily on manual annotation by expert radiologists, which is
time-consuming, subjective, and prone to high inter-observer
variability [1]. Over the past two decades, various automated
and semi-automated lesion detection tools have been devel-
oped to mitigate these limitations.

Classical approaches include tools such as the Lesion Seg-
mentation Toolbox (LST) for SPM [6] and FSL’s lesion growth
algorithm (LGA) [7], which utilizes probabilistic models and
intensity thresholding techniques. While these methods offer
some level of automation, they are often sensitive to scanner
variability, require extensive parameter tuning, and lack robust-
ness across different patient populations and lesion types [8].

III. MACHINE LEARNING METHODOLOGY

A. Dataset and Preprocessing

1) Datasets:
a) Shifts 2.0: The Shifts 2.0 dataset extends the original

Shifts benchmark by including data from a high-risk domain:
3D white matter Multiple Sclerosis(MS) lesion segmentation
in magnetic resonance imaging(MRI) scans. In MS lesion
segmentation, the dataset combines publicly available com-
ponents, such as ISBI and PubMRI, with unreleased data
from the University of Lausanne [9]. Including these diverse
sources introduces significant distributional shifts that reflect
variations in scanner types, acquisition protocols, and inter-
rater annotation guidelines. These shifts make the dataset par-
ticularly challenging and well-suited for evaluating predictive
performance and uncertainty estimation.

b) MSSEG 2016: The MSSEG 2016 dataset [10], used
extensively for multiple sclerosis lesion segmentation chal-
lenges, comprises unprocessed and preprocessed MRI data
collected during the MICCAI 2016 challenge. The dataset
includes imaging data from 15 patients for training and 38
for testing. Patients originate from four distinct MRI scanners
at different centers: those with IDs beginning with “01” are
acquired using a Siemens 3T Verio scanner in Rennes; those
starting with “03” come from a GE Discovery 3T scanner in
Bordeaux; patients beginning with “07” are from a Siemens
Aera 1.5T scanner in Lyon; and those with “08” come from
a Philips Ingenia 3T scanner in Lyon. For each patient,
the dataset provides multiple MRI modalities, including 3D
FLAIR, 3D T1, T2, DP, and 3D T1 Gd images, along
with seven manual segmentations from clinical experts and
a consensus segmentation computed using the LOP STAPLE
algorithm.

2) Preprocessing Steps:



a) Brain Area Extraction (Skull-Stripping): Brain area
extraction is the first step in our pre-processing pipeline,
commonly known as skull-stripping. This process removes
non-brain tissues such as the skull, scalp, and other extraneous
structures from the MRI scans using U-Net and ANTs-based
training data with FLAIR volume [11], [7]. By isolating
the brain region, the segmentation model is exposed only
to the relevant anatomical structures, significantly reducing
distractions and minimizing the risk of false positives. In turn,
this focused input improves the network’s ability to delineate
MS lesions accurately.

b) Denoising with Anisotropic Diffusion: To enhance
image quality, we apply anisotropic diffusion using MedPy’s
implementation for denoising, using four iterations with a
kappa value of 30 [12]. This technique smooths homogeneous
regions while preserving important edge details critical for
identifying lesion boundaries. The resulting improvement in
the signal-to-noise ratio ensures that subtle features remain in-
tact, allowing the segmentation model to extract more reliable
and robust features from the images.

c) Intensity Rescaling with Li Thresholding: Next, we
perform intensity rescaling using Li thresholding, an adaptive
method that calculates optimal intensity thresholds for the
images. This step enhances the contrast between lesions and
normal brain tissue by standardizing the dynamic range across
scans. Improved contrast is essential for enabling the model
to detect and differentiate lesion areas, especially when these
lesions present with subtle intensity differences compared to
the surrounding tissues.

d) Bias Field Correction Using N4: MRI scans often
suffer from intensity inhomogeneities due to scanner imper-
fections and coil sensitivity variations. To address this issue,
we employ N4 bias field correction from SimpleITK [13],
which corrects these inconsistencies and produces a uniform
intensity distribution throughout each scan. This uniformity is
crucial as it reduces variability and prevents the model from
being misled by scanner-induced artifacts, thereby enhancing
the overall accuracy of the segmentation.

e) Intensity Normalization to a 0–255 Scale: Following
bias correction, we normalize the image intensities to a stan-
dardized range of 0–255. This normalization ensures that all
scans have a consistent dynamic range, which is beneficial for
training stability and convergence. Consistent input intensity
profiles allow the model to learn discriminative features more
effectively, reducing variability that could impact segmentation
performance.

f) Standardizing MRI Orientation to LPS: To further
enhance data consistency, we standardize the orientation of
all MRI scans to the Left-Posterior-Superior (LPS) coordinate
system by utilizing the orientation algorithm of SimpleITK’s
“DICOMOrient” method [14]. This reorientation ensures that
anatomical landmarks are consistently positioned across all
images, simplifying the segmentation model’s task by reducing
spatial variability. Uniform orientation is critical when inte-
grating multi-axial views, as it guarantees that corresponding
anatomical features are aligned across different slices.

g) Resizing MRI Slices to 512×512 Pixels: Each MRI
slice is resized to a resolution of 512×512 pixels to ensure
uniform input dimensions. Consistent slice dimensions are
critical for efficient batch processing and ensuring that anatom-
ical structures, including lesions, are represented at a similar
scale across the dataset. It is fundamental for maintaining the
integrity of spatial features during model training. This resiz-
ing step, implemented via SciPy’s “zoom” method, preserves
spatial features while ensuring that scaling is handled correctly
across all images.

h) Extraction of Multi-Axial MRI Slices: Finally, the
preprocessed 3D MRI volumes are decomposed into 2D slices
along the coronal, axial, and sagittal axes. This multi-axial
extraction captures complementary brain views, allowing the
segmentation model to leverage diverse spatial perspectives.
The individual predictions from each plane are later fused
using a majority voting scheme, where a voxel is marked as
a lesion if at least two of the three axes indicate a lesion.
This fusion process enhances the reliability and accuracy of
the final 3D lesion mask. This step utilizes NumPy[15] for
efficient array manipulation and ensures that slice rotations
are standardized for consistent integration of multi-view in-
formation.

Fig. 1. Example MRI slices during preprocessing

IV. MODEL ARCHITECTURES

This study evaluates three deep-learning architectures for
MS lesion segmentation: UNet, CDCG-UNet, and Swin-UNet.
Each architecture employs different approaches to medical
image segmentation with specific mechanisms for feature
extraction and contextual understanding.



A. UNet

The U-Net architecture, introduced by Ronneberger et
al. [16], is a fully convolutional network designed initially
for biomedical image segmentation. Its initial successes were
in tasks like segmenting neuronal structures in electron mi-
croscopy and cell images, where it achieved superior perfor-
mance with minimal training data. U-Net’s design follows
an encoder-decoder paradigm, yielding a characteristic U-
shaped architecture that enables context capture and precise
localization.

U-Net architecture comprises a multi-layer encoder, the
down-sampling path, and a symmetric decoder or up-sampling
path, interconnected by skip connections that link correspond-
ing layers. The encoder features repeated blocks consisting
of two consecutive 3×3 convolutional operations with ReLU
activation, succeeded by a 2×2 max pooling operation. This
process progressively reduces the spatial resolution and dou-
bles the number of feature channels at each subsequent stage.
This contracting pathway effectively captures hierarchical fea-
tures, from bare edges to advanced semantic information [16].

Conversely, the decoder executes the inverse operation:
each decoder stage commences with an up-sampling step,
commonly implemented using a 2×2 transposed convolution
that reduces the feature channel count by half. Subsequently,
this up-sampled feature map is concatenated with the corre-
sponding encoder-derived feature map of equivalent spatial di-
mensions via skip connections. Post-concatenation, two addi-
tional 3×3 convolutional operations with ReLU activations are
employed to integrate the combined features. These skip con-
nections are crucial for retrieving fine-grained spatial details
lost during the encoder’s down-sampling process, enabling
precise structural delineation [16].

Ultimately, a final 1×1 convolutional layer at the decoder’s
output produces the segmentation mask by converting each
feature vector, which consists of 64 channels in the original
implementation, into a probability distribution across output
classes. The initial U-Net implementation incorporated four
down-sampling levels, culminating in 23 convolutional layers,
and demonstrated notable efficiency in seamless tile-based
predictions and rapid inference for images sized 512×512
pixels [16].

B. CDCG-UNet

CDCG-UNet (Chaotic optimization assisted Dilated Chan-
nel Gate U-Net) is a recently introduced variant of the U-
Net architecture proposed by Bhagyalaxmi and Dwarakanath
(2025) for 3D brain lesion segmentation [17]. Initially de-
veloped within the context of brain tumor MRI segmenta-
tion. It was explicitly targeting the BraTS challenge. CDCG-
UNet enhances the standard U-Net by integrating attention
mechanisms and multi-scale context modules. The architecture
emphasizes two primary innovations. The first one is the
Dilated Channel Gate (DCG) attention block. It leverages
dilated convolutions and channel-wise gating mechanisms to
refine feature representations. The second one is a chaotic

optimization strategy implemented during training to optimize
the learning dynamics of the model [17].

Collectively, these innovations aim to improve the accu-
racy of segmentation results for complex lesion structures
while maintaining reasonable model complexity. At its core,
CDCG-UNet follows the encoder-decoder structure typical of
the original U-Net. It consists of sequential down-sampling
convolutional layers (encoder) and corresponding up-sampling
layers (decoder), interconnected by skip connections. How-
ever, CDCG-UNet distinguishes itself by incorporating Dilated
Channel Gate (DCG) attention modules into the standard
feature extraction pipeline.

Each DCG attention module enhances feature extraction
through two key processes: dilated convolutions and channel-
wise gating. The dilated convolutions expand the receptive
field of the network, enabling it to capture a broader spatial
context around each voxel without reducing spatial resolution
through pooling. This property is particularly valuable for
detecting lesions and their contextual surroundings at multiple
spatial scales [18].

Following dilated convolutions, the channel gating opera-
tion applies channel-specific attention to the feature maps.
Typically implemented through global pooling or 1×1 con-
volutions, this mechanism generates attention weights for
each channel, emphasizing informative features and suppress-
ing less relevant or noisy channels, similar to squeeze-and-
excitation blocks [18]. By selectively highlighting the most
important feature channels, the network can better distinguish
lesion-related features from confounding structures.

DCG attention blocks are strategically placed within
CDCG-UNet, either at the outputs of encoder stages or along
the skip connections. This design allows the network to
dynamically adapt and prioritize lesion-specific features at
multiple hierarchical levels. Furthermore, dilated filters detect
subtle lesions by effectively capturing broader contextual
information without compromising resolution [18].

Beyond these attention mechanisms, CDCG-UNet maintains
the standard U-Net framework, including convolutional layers,
pooling, up-convolutions, and concatenation operations, now
extended into three dimensions for volumetric imaging data.
Thus, CDCG-UNet can be considered an enhanced 3D U-Net
architecture with adaptive, channel-wise attention guided by
multi-scale contextual cues.

The term “chaotic” in CDCG-UNet refers to the training
strategy rather than the architecture itself. Bhagyalaxmi et
al. [17] employed a Chaotic Harris Hawk optimization, an
evolutionary algorithm to optimize both the segmentation
loss function and network parameters during training. This
approach resulted in notably high segmentation accuracy,
achieving Dice scores in the range of approximately 0.98–0.99
on the BraTS brain tumor segmentation datasets, underscoring
the effectiveness of both the architectural enhancements and
the chaotic optimization method.



C. Swin-UNet

Swin-UNet, proposed by Cao et al. [19], is a U-Net-like
architecture that replaces conventional convolutional layers
with Transformer-based modules, making it one of the first
pure Transformer segmentation models in medical imaging.
The model was introduced to exploit the long-range self-
attention capabilities of Transformers for segmentation, ad-
dressing the limitation of CNNs, which can miss global context
due to their localized receptive fields. Swin-UNet builds on
the Swin Transformer, a hierarchical Vision Transformer that
uses shifted window attention and adapts it into an encoder-
decoder with skip connections analogous to U-Net [20]. In
their original work, Cao et al. [19] demonstrated Swin-UNet
on multi-organ and cardiac segmentation tasks, achieving
accuracy on par or better than CNN-based networks. This
showed that a convolution-free approach could successfully
perform dense segmentation, which leverages Transformers’
strength in modeling global relationships.

The Swin-UNet architecture retains the standard structure of
U-Net, consisting of a downsampling encoder, a bottleneck,
and an upsampling decoder with lateral skip connections.
However, instead of traditional convolutional layers, each
component is implemented using Transformer blocks [19].

Initially, the input image is partitioned into small patches,
typically of size 4×4 pixels. These patches are flattened and
embedded linearly, creating an initial sequence of tokens
fed into the Transformer encoder. The encoder is structured
hierarchically using Swin Transformer blocks, grouped into
multiple stages. At each stage, tokens are organized into
local windows for computational efficiency, and self-attention
operations are applied. Subsequently, patch merging reduces
the resolution of the token representation, similar to pooling
layers in convolutional networks, creating increasingly coarse-
scale features [19].

At the bottleneck stage, the lowest-resolution level, a Trans-
former block captures global context across the image, using
a shifted-window mechanism that enables interaction between
windows at deeper layers [19]. This global attention is valuable
in medical imaging applications, where correlations across
distant image regions (e.g., lesions appearing in different
locations) may exist.

The decoder portion of Swin-UNet reverses this downsam-
pling process. It employs learnable patch-expanding layers to
incrementally increase the spatial resolution of the tokens,
effectively reversing the encoder’s patch merging operation
by splitting tokens and reducing the channel dimension. After
each upsampling step, decoder tokens are concatenated with
corresponding high-resolution encoder tokens through skip
connections, preserving and injecting local detail into the
decoding stages. Transformer blocks further process these
combined representations [19].

The Swin-UNet relies exclusively on self-attention and
multi-layer perceptron (MLP) layers rather than convolutions.
At lower resolutions, self-attention is constrained to local
windows to manage computational complexity effectively. As

resolution increases during decoding, the attention mechanism
dynamically adapts, allowing the network to recover and refine
detailed local structures progressively [19]. Finally, a linear
projection layer maps the output token embeddings to a seg-
mentation map. By integrating global contextual understanding
and precise local details through Transformer-based attention
and skip connections, Swin-UNet effectively addresses dense
prediction challenges inherent in medical image segmenta-
tion tasks. The architecture’s performance has been demon-
strated to meet or surpass state-of-the-art convolutional neural
network-based models, establishing Transformers as viable
and competitive tools in medical imaging segmentation [19].

V. TRAINING & HYPERPARAMETERS

A. Data Preparation and Partitioning

The data used in this study were obtained from volumetric
MRI scans, primarily focusing on Fluid-Attenuated Inversion
Recovery (FLAIR) [7] sequences due to their high sensitivity
in detecting demyelinating lesions. Each 3D MRI volume was
divided into two-dimensional slices, each measuring 512×512
pixels. Corresponding ground-truth annotations were provided
as binary images of identical dimensions (512×512 pixels)
aligned precisely with their respective MRI slices.

The dataset was randomly divided into training, validation,
and test sets to improve model robustness and reduce the risk
of overfitting. An 80:20 split between training and validation
data was typically used for experiments conducted using
TensorFlow and Keras frameworks. Additionally, an entirely
separate test set was reserved to allow unbiased evaluation
of model performance, facilitating fair and consistent com-
parisons across different model architectures and loss func-
tions. Data augmentation techniques were implemented during
the training phase, including random horizontal and vertical
flipping, slight rotations, and intensity normalization. These
augmentations were explicitly selected to mimic realistic vari-
ations in lesion appearances, enhancing the model’s ability to
generalize effectively across various clinical conditions.

B. Model Configuration and Loss Functions

Several neural network architectures were implemented and
compared in this study, including enhanced two-dimensional
U-Net variants developed using TensorFlow/Keras, an
attention-based Channel-Dilated Convolution and Gating
(CDCG-UNet), and a transformer-based Swin-UNet imple-
mented in PyTorch. Regardless of the chosen architecture or
framework, the input was consistently a single-channel image
slice, reshaped and batch-loaded for processing.

Training objectives were specifically chosen to address the
inherent class imbalance in lesion segmentation, as lesion areas
typically represent a small portion of the image. Loss functions
employed were primarily designed to optimize overlap accu-
racy and included Dice-based metrics [21] and Tversky and
focal Tversky variants [22]. Dice loss was selected to max-
imize spatial overlap precision. Tversky-based loss variants
provide flexibility by assigning differential weights to false
positives and false negatives, particularly improving sensitivity



to small lesion regions. Additionally, learning rate scheduling
techniques were applied to improve training stability: Tensor-
Flow/Keras [23], [24] models generally utilized an exponential
decay schedule (reducing the learning rate by approximately
10% after fixed intervals), whereas PyTorch [23] implementa-
tions either employed a fixed learning rate or a slight decay
schedule, depending on initial testing outcomes.

C. Optimization and Training Procedure

We used an NVIDIA A100 Tensor Core GPU with 80GB
of memory during training. All models, namely UNet, CDCG-
UNet, and Swin-UNet, were implemented using Python 3.9
and PyTorch 2.2.2, ensuring a reproducible and state-of-the-
art deep learning environment. We used a batch size 16 with
shuffling to promote diverse mini-batches, facilitating robust
parameter updates. Each input image was resized to a fixed
dimension of 512×512, and patches were extracted at the
same resolution to maintain uniform spatial representation
across the dataset. For optimization, we utilized the Adam
optimizer with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−7,
and Amsgrad option is set to False. The learning schedule
followed an exponential decay strategy, with decay steps set
to 10,000 and a decay rate of 0.9, starting from an initial
learning rate of ϵ = 3 × 10−5. Training was conducted for
100 epochs, a duration chosen to allow sufficient convergence
iterations while avoiding overfitting risks. We employed “Dice
Loss” as our loss function because it optimizes the overlap
between predicted segmentation and ground truth, a critical
consideration in medical image segmentation, especially when
dealing with class imbalances.

These training parameters were maintained consistently
across both experimental conditions: training with only the
MSSEG 2016 [25] dataset and training with a combined
dataset of MSSEG 2016 and Shifts 2.0 [9]. This ensured that
performance differences could be attributed solely to model
architecture and data composition rather than variations in the
training regimen.

VI. EVALUATION

A. Quantitative Comparison of Models

1) Evaluation Protocol:
a) Train-Test Split for “Only MSSEG 2016”: For the

“Only MSSEG 2016” condition, the dataset was divided into
15 patients for training and 38 patients for testing, as originally
provided by the challenge. The training and testing cohorts
were further characterized by scanner origin.

TABLE I
NUMBER OF TRAINING/TESTING SAMPLES FOR “ONLY MSSEG 2016”

Scanner Training Scans Testing Scans
Siemens 3T Verio 5 10
GE Discovery 3T 0 8
Siemens Aera 1.5T 5 10
Philips Ingenia 3T 5 10

b) Train-Test Split For “MSSEG 2016 and Shifts 2.0”:
In the “MSSEG 2016 and Shifts 2.0” condition, the MSSEG
2016 data was augmented with the Shifts 2.0 dataset to form
a combined training set incorporating a broader range of
acquisition protocols and clinical settings. This merged dataset
was partitioned into training and testing subsets using an 80-
20 split, with 80% of the samples allocated for training and
the remaining 20% reserved for testing. Integrating Shifts
2.0 data introduced additional distributional shifts, resulting
from introducing a different scanner model for training and
more data from other scanners. This process ensured that the
evaluation of model robustness and uncertainty quality was
not limited to the controlled settings of the MSSEG 2016
challenge alone.

TABLE II
NUMBER OF TRAINING/TESTING SAMPLES FOR “MSSEG 2016 AND

SHIFTS 2.0”

Scanner Training Scans Testing Scans
Siemens 3T Verio 11 12
GE Discovery 3T 4 9
Siemens Aera 1.5T 13 12
Philips Ingenia 3T 13 12

c) Validation: For both training conditions, we reserved
20% of the training data for validation. This validation split
was used to fine-tune hyperparameters and monitor model
performance during training, ensuring our evaluation metrics
were robust and indicative of performance on unseen data.

B. Metrics for Assessment

A suite of metrics, which capture both overall accuracy and
the quality of lesion delineation, were selected to thoroughly
evaluate the performance of segmentation models. Each metric
was chosen for its relevance to medical imaging, where the
cost of misclassification can be high, and precise localization
of lesions is critical [26].

a) Intersection over Union (IoU): Also known as the Jac-
card Index, IoU quantifies the overlap between the predicted
segmentation and the ground truth by calculating the ratio of
their intersection to their union. This metric is particularly sig-
nificant for medical imaging applications, as it directly reflects
how well the model delineates the actual lesion areas [27]. A
higher IoU indicates that the model is adept at capturing the
precise boundaries of lesions.

b) Dice Score: The Dice Score, often considered the
gold standard for evaluating medical image segmentation,
measures the similarity between the predicted and ground
truth masks [26], [27], [28]. It is susceptible to overlapping
regions and is widely used because of its ability to account
for the small size of lesion areas relative to the entire image.
This metric directly impacts the clinical usability of the
segmentation output by ensuring that even small lesions are
detected accurately.

c) Precision: Precision is the ratio of true positives to
the total number of positive predictions. In a medical setting,
high precision is essential to minimize false positives, which



could otherwise lead to unnecessary follow-up procedures
or undue patient anxiety. It reflects the model’s ability to
correctly identify lesion areas without erroneously labeling
healthy tissue.

d) Recall: Recall, or sensitivity, measures the ratio of
true positives to the total number of actual positive cases. For
lesion segmentation, achieving high recall is critical because
missing a lesion (a false negative) can have severe conse-
quences, including delayed diagnosis or inadequate treatment.
Therefore, recall is a key indicator of the model’s effectiveness
in detecting all actual lesion areas.

e) F1 Score: The F1 Score, as the harmonic mean of
precision and recall, provides a single metric that balances
both false positives and false negatives. This balance is critical
in clinical applications where over-segmentation and under-
segmentation can be problematic [29]. The F1 Score offers a
comprehensive measure of segmentation quality, reflecting the
overall reliability of the model.

VII. RESULTS

This section presents the accuracy measures of U-Net,
CDCG-UNet, and, Swin-UNet.

A. Results for Coronal Axis

TABLE III
CORONAL AXIS RESULTS FOR “ONLY MSSEG 2016”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9993 0.4216 0.5859 0.4997 0.8408 0.5895

CDCG-UNet 0.9993 0.4103 0.5728 0.4804 0.8640 0.5737
Swin-UNet 0.9993 0.5658 0.6198 0.6229 0.7957 0.6198

TABLE IV
CORONAL AXIS RESULTS FOR “MSSEG 2016 AND SHIFTS 2.0”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9994 0.4378 0.6033 0.5044 0.8623 0.6034

CDCG-UNet 0.9994 0.4706 0.6344 0.5447 0.8654 0.6346
Swin-UNet 0.9994 0.6262 0.6857 0.6915 0.8277 0.6857

Across the coronal slices, Swin-UNet achieved the highest
IoU (0.6262) and F1 score (0.6857), indicating more sub-
stantial overlap and segmentation consistency compared to
the other models. This observation demonstrates its advantage
in accurately capturing lesion boundaries, especially in views
aligned with frontal brain slices.

B. Results for Axial Axis

TABLE V
AXIAL AXIS RESULTS FOR “ONLY MSSEG 2016”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9993 0.3921 0.5459 0.4960 0.8568 0.5481

CDCG-UNet 0.9995 0.4383 0.5897 0.6004 0.7607 0.5899
Swin-UNet 0.9991 0.6072 0.6427 0.6218 0.8808 0.6427

Fig. 2. Coronal axis MSSEG 2016 & Shifts 2.0

TABLE VI
AXIAL AXIS RESULTS FOR “MSSEG 2016 AND SHIFTS 2.0”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9994 0.4191 0.5754 0.5198 0.8734 0.5755

CDCG-UNet 0.9995 0.4509 0.6053 0.5608 0.8716 0.6054
Swin-UNet 0.9994 0.7015 0.7417 0.7427 0.8725 0.7417

The axial view results once again show that Swin-UNet
outperforms both U-Net and CDCG-UNet, with IoU (0.7015)
and F1 score (0.7417).

Fig. 3. Axial Axis MSSEG 2016 & Shifts 2.0

C. Results for Sagittal Axis

TABLE VII
SAGITTAL AXIS RESULTS FOR “ONLY MSSEG 2016”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9990 0.4094 0.5698 0.4776 0.8748 0.5699

CDCG-UNet 0.9990 0.3857 0.5452 0.4588 0.8564 0.5473
Swin-UNet 0.9990 0.4932 0.5563 0.5304 0.8154 0.5563



TABLE VIII
SAGITTAL AXIS RESULTS FOR “MSSEG 2016 AND SHIFTS 2.0”

Model Accuracy IoU Dice Precision Recall F1
U-Net 0.9992 0.4436 0.6065 0.5171 0.8732 0.6066

CDCG-UNet 0.9991 0.4426 0.6054 0.5104 0.8858 0.6055
Swin-UNet 0.9993 0.5715 0.6368 0.6491 0.7762 0.6368

Although all models performed closely regarding F1 score
for the sagittal plane, Swin-UNet is still better (IoU = 0.5715,
F1 = 0.6368), indicating its robustness even when lesion
shapes are more variable across left-right slices.

Fig. 4. Sagittal axis MSSEG 2016 & Shifts 2.0

D. Cross-Axis Comparison Using IoU and F1 Scores

To compare the performance of all models across different
anatomical views, we analyzed the Intersection over Union
(IoU) and F1 scores for each axis—coronal, axial, and sagittal.
Figure 5 shows the comparative performance across all axes
and models.

The results highlight a consistent trend: Swin-UNet outper-
forms U-Net and CDCG-UNet across all three axes in both
IoU and F1 metrics. This consistency highlights its ability to
generalize across anatomical planes and lesion distributions.

• Coronal axis: Swin-UNet achieved the highest IoU
(0.6262) and F1 score (0.6857), outperforming the next-
best model, CDCG-UNet, by over 15% in IoU.

• Axial axis: Swin-UNet achieved the strongest perfor-
mance again, with a remarkable IoU of 0.7015 and an
F1 of 0.7417—the highest among all axes and models.

• Sagittal axis: Although performance differences were
smaller in this view, Swin-UNet led with 0.5715 IoU
and 0.6368 F1, showing improved generalization even in
noisier contexts.

Overall, Swin-UNet demonstrates the highest segmentation
accuracy across all views and excellent stability, validating its
strength in capturing both local detail and global context in
3D MRI volumes.

VIII. QUALITATIVE VISUAL RESULTS

We selected representative cases that capture the diversity
of lesion appearances, including varying sizes, shapes, and
contrasts. These representative cases were chosen based on
quantitative performance metrics and visual inspection, ensur-
ing that the selected examples include typical scenarios and
challenging cases where lesions are subtle or have irregular
boundaries.

For visual comparison, segmentation masks generated by
each model were overlaid on the original MRI scans. This
overlay technique directly assesses how closely the predicted
lesion boundaries match the expert annotations. By presenting
these overlays, we can qualitatively compare the strengths and
weaknesses of each model.

The overlay visualizations reveal several key insights into
the segmentation performance of the models. In the axial
view, Swin-UNet accurately delineates lesion boundaries with
minimal false positives, outperforming CDCG-UNet and UNet
in that order. Although all models capture lesion features in
the sagittal plane, Swin-UNet leads in precision, followed by
UNet, with CDCG-UNet trailing behind in effectively iden-
tifying subtle lesions. Similarly, for the coronal view, Swin-
UNet delivers the most accurate and robust segmentation, with
CDCG-UNet performing moderately well and UNet showing
comparatively lower performance.

In cases with clearly defined lesion boundaries, the Swin-
UNet model demonstrates a remarkable dominance in cap-
turing the precise contours of lesions, as evidenced by a
prevalence of green overlay areas where the predicted and true
labels align. This contrasts with the other models, which in
some instances exhibit more red (false negative) regions when
compared to Swin-UNet, particularly in areas where lesions
are small or exhibit irregular shapes. In challenging cases
where lesions are subtle and exhibit low contrast, the predic-
tions of Swin-UNet remain sturdy, indicating fewer omissions
and a higher degree of alignment with expert annotations.

IX. DISCUSSION: WHY SWIN-UNET WINS?

The superior performance of Swin-UNet can be attributed
to several architectural and methodological innovations. At its
core, Swin-UNet adopts a pure Transformer design structured
as a U-shaped encoder-decoder with skip connections. Unlike
conventional CNNs, the hierarchical Swin Transformer, with
its shifted window attention mechanism, enables the model
to capture local fine-grained details and long-range global
contextual information. This dual capacity is crucial in medical
image segmentation, where complex lesion boundaries require
precise delineation, and the contextual surroundings help dis-
tinguish subtle pathological regions from healthy tissue. The
architecture’s intrinsic ability to learn feature representations
from tokenized image patches underpins its competitive edge
over conventional convolution-based approaches [19].

Improved generalization is another integral factor. Swin-
UNet benefits from various imaging conditions and patient
demographics more efficiently than UNet and CDCG-UNet.
This makes the model less sensitive to intensity and structural



Fig. 5. Bar chart comparing IoU (left) and F1 scores (right) across coronal, axial, and sagittal axes

Fig. 6. Example segmentation results

heterogeneity variations, a common challenge in clinical set-
tings. The attention mechanism further mitigates the effects of
these shifts by focusing on the most informative regions of the
image, thus enhancing overall generalization and ensuring that
the model performs reliably across different clinical settings.
For instance, it generalizes better for scans coming from
different MRI scanners.

Quantitatively, Swin-UNet consistently achieves higher
Dice, IoU, Recall, and F1 scores than UNet and CDCG-
UNet. These improvements are directly linked to its advanced
ability to model complex and irregular lesion shapes, often
poorly handled by traditional convolutional approaches. The
pure Transformer approach eliminates the locality constraint
inherent in CNNs, allowing for more flexible and effective
modeling of global interdependencies within the image [19].
This results in precise lesion detection and reduced false
negatives.

From a clinical perspective, the enhanced segmentation
quality provided by Swin-UNet translates into more reliable

Fig. 7. The architecture of Swin-UNet

lesion maps, which can directly inform clinical decision-
making processes. Reliable segmentation is vital for moni-
toring disease progression, planning treatment, and improving
patient outcomes [30].

X. CONCLUSION

This study comprehensively evaluates U-Net, CDCG-UNet,
and Swin-UNet for segmenting multiple sclerosis lesions in
brain MRI scans across coronal, axial, and sagittal views.
Quantitative analyses demonstrate that Swin-UNet consistently



achieves superior performance in terms of IoU and F1 score,
confirming its capability to generalize across varying anatom-
ical planes and lesion distributions. These results underscore
the potential of transformer-based architectures in enhancing
the accuracy of medical image segmentation. Future work
will extend this analysis to spinal MRI data to assess the
generalizability of these models beyond the brain and support
broader clinical applications in MS diagnosis and monitoring.
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